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Summary

The mechanism by which the noise generated at the blade passing frequency by a propeller is
altered when the propeller axis is at an angle of attack to the freestream is examined herein. The
measured noise field is distinctly non axially symmetric under such conditions with far field sound
pressure levels both diminished and increased relative to the axially symmetric values produced with
the propeller at zero angle of attack. Attempts have been made to explain this non axially symmetric
sound field based on the unsteady ("once per rev") loading experienced by the propeller blades when
the propeller axis is at non zcro angle of attack. A calculation based on this notion appears to greatly
underestimate the measured azimuthal asymmetry of noise for high tip speed, highly loaded propell-
ers. A new mechanism is proposed herein; namely, that at angle of attack, there is a non axially sym-
metric modulation of the radiative efficiency of the steady loading and thickness noise which is the pri-
mary cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily
loaded propellers with a large number of blades. A calculation of this effect to first order in the
crossflow Mach number (component of freestream Mach number normal to the propeller axis) is car-

ried out and shows much better agreement with measured noise data on the angle of attack effect.



Introduction

In recent years, there has been a renewed interest in high tip speed turboprop systems for com-
mercial aircraft applications. Many of the practical applications envisage counter rotating propeller
(CRP) driven aircraft though careful experimental evaluations (both aerodynamic and acoustic) have

been made of both single rotation propellers (SRP) and CRP’s.

In the present study, we address a particular aspect of the noise radiated at the blade passing fre-
quency (BPF) by a propeller. In an ideally uniform stream with the propeller axis coincident with the
direction of the free stream, aerodynamic sound at the BPF produced by the propeller blades is due
to the steady air loading (drag and lift) carried by the blades and also due to the thickness of the
blades. A characteristic of this sound field is that it is axially symmetric in magnitude with the axis of
symmetry being the propeller axis. The first theoretical analysis of steady loading noise was given by
Gutin (1936) with Garrick & Watkins (1954) contributing the extension of Gutin’s work to the case of
a propeller in forward flight. Much progress has been made since these studies in terms of our ability
to predict steady loading/thickness related noise. The two principal avenues of improvement in
recent years have been the use of computational fluid mechanics techniques to predict the steady
pressure distribution on the blade surfaces and the recognition in the acoustic theory of source non-

compactness effects.

When the propeller is installed in an aircraft, clearly it does not operate in the environment of a
uniform stream whose direction is coincident with the propeller axis and the sound field at the BPF
can be quite different from the previously described ideal case. These effects are described as "instal-
lation effects”. An elementary example of the installation effect is that under takeoff/approach condi-
tions, the direction of the propeller axis deviates from the direction of forward flight leading to the
"angle of attack" effect. Recent experimental studies of the angle of attack effect on propeller BPF
noise include those of Block (1984) and Woodward (1987a) for SRP’s and of Woodward (1987b) for
CRP’s. Paradoxically, as will be discussed below, this most elementary installation effect has proved

2



quite difficult to understand.

The characteristics of the measured non axially symmetric sound field at angle of attack can be
described in terms of the polar coordinate system shown in figure 1. The BPF sound field (which is
axially symmetric at zero angle of attack) roughly speaking is found to be diminished in the upper
quadrants on the right hand half of Figure 1 (i.e. for 0< ¢ < 7) and increased in the lower quadrant (r
< ¢ < 2 ) with the minima and maxima occurring approximately at ¢ = x/2 and ¢ = 3 /2 relative to
the zero angle of attack case. For highly loaded, high tip speed propellers the changes can be quite
large. In the vicinity of the plane of rotation the changes can be as large as 1 dB per degree of angle
of attack. All prior attempts to explain this noise change due to angle of attack have proceeded as fol-
lows. The BPF noise of the propeller due to steady loading and thickness is calculated using the usual
methods for a propeller in uniform axial flow. This sound field due to steady loading/thickness which
is axisymmetric in amplitude but not in phase is assumed to be unchanged with the propeller operating
at angle of attack. Due to angle of attack, clearly unsteady loading at "one per revolution” will be
experienced by the propeller blades which will cause additional noise at the BPF. When this new
sound field is added to that due to the steady loading with proper consideration being given to the

phasing between the two sources, a resultant non axisymmetric sound field is obtained.

As will be shown in the next section, for lightly loaded propellers especially with few blades and
spinning at low tip speeds, this procedure does seem to yield results in agreement with data. For
highly loaded, high tip speed propellers especially with larger number of blades, this procedure yields
gross underestimates of the measured departure from the axisymmetrical situation due to angle of
attack. A new mechanism is pointed out which negates the notion that the sound field due to steady
loading/thickness is unchanged by angle of attack. A first order (in angle of attack) estimation of this
mechanism is carried out which appears to greatly improve the theory-data comparisons. Indeed the
suggestion that emerges from this analysis is that for highly loaded, high tip speed propellers with a

large number of blades, the angle of attack effect on BPF propeller noise is largely unrelated to
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unsteady loading.

The notation used in this report is indicated in Appendix 2.



Steady Loading and Unsteady Loading Noise

In the work described herein, the acoustic source distributions are assumed to be acoustically
compact in the chordwise direction. In other words, a line source model is employed. Also in this
section the only mean flow cffect accounted for is a uniform axial flow corresponding to the flight
velocity. At time "t = 0," let the location of this line source be as shown in Figure 4, and let the sweep
be as shown in Figure 5. Thus, "ay (r)" and "Ax (r)" define the radial lean and axial sweep of the
blades. The following results were derived for the purposes of this work by the use of axial Fourier
transforms and the method of stationary phase, but they are in agreement with results given by Hawk-

ings and Lowson (1974) and Hanson (1984), and hence, only the final result of the analysis is given.

The contribution to p " from the blade element lying between "r" and 'r + dr" is given by:

ap, _ jnB*Q 7 nBQr sin 8
dr _ 2xRc (1-Mgcosd) = =" | ¢ (1-Mpcosb)

exp [j [%ﬁ%ﬁ +nB (¢-%) + nBoy(r) -nB(k”

[ fr0 cOSO ; cf o N jan,,cﬂhl] 0

(1-Mgcos®) ~ r  (1-Mgcosf)

In Equation (1), the far field noise is expressed in terms of R, § (the coordinates of the observer
relative to the "retarded” propeller disk location). The relationship between these coordinates and
R, 0, (the coordinates of the observer relative to the current propeller disk location) is shown in Fig-
ures 2 and 3. In Equation (1), wherever two signs appear, the upper sign refers to counterclockwise

rotor rotation, and the lower sign to clockwise rotation (forward looking aft).

Now consider the noise due to unsteady loading. Let the unsteady loading per blade per unit

spanwise length in a frame of reference fixed with a rotating blade be expressed in the form:



o0
Unsteady z component = kF__)l [ cos(kS¥) (2a)

and

Unsteady ¢ component = :2:1 fa cos(kx) (2b)

Both fzk and { s k 2re positive functions of "r". Also, let B, (r) and 8 ¢k(r) denote the azimuthal

angles in the coordinate system of Figure 1 where these unsteady components achieve their maximum

positive values. Then, unsteady loading noise from blade elements lying between "r" and "r+dr" con-
tributes to the far field pressure a quantity dpk/ dr, given by the sum of:

(&%)

where
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The total far field acoustic pressure can now be computed as:

r

“dp,  ® (dpk % (dpy

= R+ == | ar 5
P ;{ dr +k):=;1[dr]+ k{)l[dr_ )

"

where ry and r; denote the inner and outer radii of the propeller disk, respectively, and where "p

is a complex number whose amplitude gives the amplitude of the far field pressure in the nth har-

monic of blade passing frequency.

The above formulation could, perhaps, be expressed more concisely with more extensive use of
complex notation. However, it was felt preferable to restrict consideration to positive n and k and,
also, to consider both clockwise and counterclockwise rotating propellers. These interests, and the

desire to be accurate concerning phase relations, have led to the above formulation.

The theory needed to compute the steady axial and tangential forces for a SRP is based on that of
Glauert (1963). The formulation is based on incompressible flow theory and the inputs needed are:
relative radius (r/R) of interest, solidity (chord/transverse spacing) at this radius of interest, number
of blades, specification of the section lift and drag coefficients as functions of angle-of-attack (includ-
ing the orientation of the reference line with reference to which the angle-of-attack is specified), and
the speed ratio, A = U/Q R. The version used for the work described herein incorporates the Prandtl

tip loss factor.

For the CRP case, an extension of Glauert’s theory by Lock (1941) with inclusion of an approxi-

mate accounting of slipstream contraction is used.

In order to ensure that lift and drag coefficients as functions of angle of attack are realistic, these
relations were deduced from performance maps for the relevant propellers by inverting the
Glauert/Lock theories at a representative span location such as 70% span. This however entails
several additional assumptions such as that for the flow per unit area and work addition per unit mass

of fluid are uniform. We assume that the coefficient relations deduced in this manner for the 70%



span location are valid for all spanwise locations.

To determine the unsteady forces, in this study, we have used a quasi-steady approximation based
on the Glauert/Lock theories to deduce the unsteady forces. The angle of attack induces a low fre-
quency modulation of the blade loading in a frame of reference fixed with the rotor blades and hence
a quasi-steady approximation should be adequate. The quasi-steady approximation for SRP’s and

CRP’s is outlined in Appendix 1.

A fairly complete theory data comparison with data from Block (1984) based on the theory of this
section can be found in Whitfield (1989). In Block (1984), the tests were carried out on a four bladed

SRP designated as an SR2. Some sample results from Whitfield (1989) are reproduced herein.

Figure 6 shows results for the axisymmetric sound field at zero angle of attack at a tip speed of
443 fps. In Figure 7 a theory-data comparison is shown for the change in noise due to angle of attack
in the plane of rotation. Figures 8 and 9 show similar results for the same propeller at a higher tip
speed of 745 fps. It is a characteristic of the theory outlined in this section that, in the plane of rota-
tion, the acoustic factor for BPF noise determining the ratio of unsteady loading to steady loading
effects scales as "Jp_1(BM,)/J3(BM,)". Since this ratio diminishes as "M," (wheel tip Mach number)
increases through subsonic values, it is not surprising that smaller angle of attack effects are predicted

for a higher tip speed (Figure 9 versus Figure 7).

The results in Figures 7 and 9 are encouraging considering the data scatter though it is arguable

that a systematic underprediction of the magnitude of the noise decrease is evident in Figure 9.

In Figures 10(a) and 10(b), we show the results of applying the theory of the present section to
angle of attack effects measured by Woodward (1987b). These measurements are on a 11 x 9 bladed
CRP spinning at approximately 800 fps in a Mach 0.2 airstream. The theory-data comparisons for the
angle of attack effect on the BPF noise of the front rotor indicate a severe underprediction of the

measured effect.



The key difference between the propellers tested by Block (1984) and Woodward (1987b) is that
the latter propellers operate with substantially higher steady loading (lift coefficients are higher by a
factor of 2-3) and the number of blades involved in the Woodward experiments (11 and 9) is much

greater than the four blades used in the Block experiment.

In the course of analyzing the disappointing results of Figure 10(a) and 10(b) (an exhaustive
theory-data comparison based on the results of the present section was carried out with all the BPF
data available in the Woodward experiments with results typically as shown in Figure 10) the author
was made aware by colleagues at the NASA Lewis Research Center that presently unpublished
research has yielded similar gross underprediction of the measured azimuthal variation of BPF noise
with angle of attack. Estimates of the unsteady force levels (derived herein by a quasi-steady approxi-
mation) are of course of interest in the context of forced vibration of the propeller blades and conver-
sations with colleagues in that discipline indicate that the unsteady force estimates provided by the
present procedure for the angle of attack effect are reasonable. It also seems necessary to contend
with the observation that the theory of the present section appears to perform adequately in explain-

ing the Block (1984) experiments with lightly loaded, four bladed propellers.

The experience cited above has led to a re-examination of a basic premise of the present develop-
ment; namely, that the steady loading/thickness noise itself is unaffected by angle of attack. As the
discussion of the next section will show, this premise appears incorrect. An approximate accounting
of the effect of angle of attack on steady loading/thickness noise is carried and a very substantial
improvement is now evident in terms of the Woodward (1987b) studies. The development of the next
section will also elucidate why this effect is relatively unimportant for lightly loaded, low tip speed pro-

pellers with a few number of blades as were involved in the Block (1984) experiments.



The Alteration of Steady Loading/Thickness Noise Due to Angle of Attack

The physical mechanism which causes the steady loading/thickness noise of a propeller to be fun-
damentally non axially symmetric (i.e. in both amplitude and phase) when the propeller is at angle of

attack is quite simple and can be explained in terms of Figure 11.

In this figure we show a steady source executing a circular motion as would be characteristic of steady
sources rotating with the blade. Also shown in the figure is the uniform upwash provided by the cross
flow due to angle of attack. Now the radiative efficiency of a source depends on the relative velocity
between the source and the fluid surrounding it and as Figure 11 shows this relative velocity (and
hence the radiative efficiency) is modulated in a non axisymmetric fashion due to the cross flow. This

effect has been neglected in prior analyses.

To capture this effect, we proceed as follows. Including the cross flow (designated as "My" in Fig-

ure 12), the acoustic pressure due to steady loading satisfies:

2 2 . . 2 A 1 af¢
Pu (1-M) + pyy, (1-My) + pyy + 2jkM,p, + 2jkM,p, - 2MMp,, + k’p = (EE * 5¢-)

where k = w/c, all quantities have a time dependence as exp (~jut), "c" is the speed of sound, M, and
My are axial and cross flow Mach numbers, "fx, f ¢“ are the force terms and j = V-1 and Py denotes

&p /ax?, etc. In the followin , will be denoted by M.
g

Let

fe = fro @Xp (jm¢) 8 (x) & (r-a)
fs = f40 exp (jme) 6(x) & (r-a)

where "¢" is the azimuthal coordinate. In the present study, it has been possible to solve the above

problem only to O(My).

Define the axial Fourier transform pair:
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and

Then to O (My), P satisfies:
Py, + P, + 2jM,P, (k-aM) + [(MM)2 -a2] P=j [afxa + (%)f,,,,l § (r-a)ei™®
Nowlet P = P exp [ijy(k-aM)]

Then to O (My)’ P satisfies:

P, + Py + [(k~odW)2 -a2]1_>=j [af;“, + mf@/a]

5(r-a)eim? { L+ My(koMya (22 5 ” )]

Let

7 =V (k-oM)*<?

Then
P =7 |(0a) fro + mfye| exp [-iMyy (kM)

My(kaM)a ..

[ I () H () +

MM jon 1% 5, (a) B, (1)

Im +1 (a) an”ﬂ () -

We can now set x=-R cosf,r =R, sin 0. andy = R, sin O sin ¢ and carry out an asymptotic
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evaluation of "p" for large R . The full details of this asymptotic evaluation are not necessary and it
suffices to note the following. Firstly in the evaluation of the "m" azimuthal mode in the above there
are O(My) shifts in the point of stationary phase (relative to the case My=0). This shift of the point
of stationary phase is illustrated in Figure 13, in terms of the resulting new relation between current
and retarded coordinates. It is reiterated that Figure 13 is valid only to O(My) Note that the relation
between current and retarded coordinates itself now is non axially symmetric i.e. it depends on "¢".
However this detail is far less significant than the appearance of new azimuthal modes of order (m-1)
and (m+ 1) in the equation above. For the "m-1" and "m+ 1" modes we can use the point of stationary
phase as for "My=O" since these are O(My) contributions and hence relative to the "m" mode, these

contribute as:

moq . P L@ -7/2) My(ka) ka sin
' 2(1-M cos 6) 711 (1-M cos 6)

b1 2P U(g7/2)IM,(ka) ; ka sin @
" 2(1-M cos 6) M+ 1 (1-M cos 6)

where the relation between "¢ " and retarded angular coordinate "¢" is as shown in Figure 3. Clearly
the "m-1" term contributes much more significantly than the "m-+1" term. A virtually identical treat-
ment applies to thickness noise. Note that "ka = nBM," where "n" is harmonic of BPF noise, "B =

number of blades" and "M, = wheel tip Mach number" at radius "a".

The modifications to equation (1) to O(My) will now be written out. In order to clearly motivate
this development, this procedure will be carried out step-by-step. Firstly we reconsider and rewrite

equation (1). Introduce the following symbols.
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Symbol
prmit

camp

arg

pht

tht

Value
jnB 20 /(2xC)

1/(1-M cosf)

nBQrsin(f)(camp)/c

. k(R +Axcosf)
e—xp[/[ 1-Mcosb) *
+nBoy (r)-nB¥]]

jnBp,cQAl

nB(()-%)

Significance
premultiplier

convective
amplification factor

argument of
Bessel function

phase

term

thickness
term

With the above symbols, the present form of equation (1) can be written as:

+

dp,
dr
- Cfgo(camp)
o

= j&"ﬁl_;Ml (froc08(8)(camp)? J . np(arg)

J +nB (a'g) + (tht)(camp)3 J *nB (a’g))

When effects on steady loading/thickness noise to O(My) are calculated, the following new symbols

are introduced.

i. aat (for "angle of attack" term):

i M,

(aar) = (nBYM,(camp)/2c)
(exp(j(n/2))J +np +1 (arg) -
exp (-j($x/2)) J tnp1(arg))

¢ = M, sin ¢ (component of cross flow Mach number in "¢" direction)

iii. Af = M, (M-cosf)/(1-M cos ) (change in emission angle to O(My) due to cross flow for fixed

RC,GC)

iv. cos(y) = cosf- Adsin @

sin(y) = sind + Afcos §

("y" is the new emission angle to O(My) for fixed R c, 6.)
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v. R =R(1-My/(1-Mcoss))

(R q is the new distance of observer from center of retarded propeller to O(My) for fixed R,
8.)
vi. campn (for new "convective amplification factor") = 1/(1 - Mcosy + M, 4sind)

vii. argn (for new argument of Bessel functions) = nBQr(siny+M,4)(campn) /c

Then the result analogous to equation (1) including the crossflow effect to O(My) is:

dpa 2
o = (prmit)(pht)[f,, (cos y{campn)
J +np(argn)/R, + (aat) cos (6) (camp)?/R)
; f40 ( (campn)J] . g(argn) N (aat)(camp) )
r R, R

+ (tht)((campn)* J .np(argn)/R, + (aat)(camp)*/R)]
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Revised Theory-Data Comparisons and Discussion

The results presented in this section use the revised acoustic theory for steady loading/thickness
noise and the old acoustic theory (wherein the only mean flow effect dealt with is a uniform, axial
flow) for the unsteady loading/thickness noise. This approach is consistent with the idea that at
present only an O(My) acoustic theory has been developed where "M_ " is the crossflow Mach number
due to angle of attack. All "¢" coordinates referred to in Figures 14-21 are current coordinates (as
opposed to retarded coordinates). All predictions are for the fundamental BPF tone of the relevant

propeller and are for the noise change due to angle of attack.

In Figures 14-15, using the new acoustic theory, we show theory-data comparisons for the Block
(1984) data. It can be seen that the comparisons are at least as good as shown in Figures 7 and 9.
The new effect discussed in the previous section scales as "nBM,' and pertains only to steady
loading/thickness noise. Thus it is not surprising that the new effect is not very consequential for a

lightly loaded, four bladed propeller such as the SR-2 used in the Block (1984) experiments.

In Figures 16-21 we show the theory data comparisons for the CRP data of Woodward (1987b).

Several comments concerning these theory-data comparisons are noted below.

1. In cases where the measured "¢ is not close to a multiple of 10 degrees, predictions for multi-

ples of 10 degrees bracketing the measured "¢" are both compared with the data.

2. Figures 16(a),(b) may be compared to Figures 10(a),(b) (the data shown in these figures are
the same). A dramatic improvement is now evident with the revised acoustic theory in terms of

the substantial under prediction of the old acoustic theory of the angle of attack effect.

3. Figures 17 and 19 indicate that angle of attack effects on the rear rotor noise are still
significantly underpredicted. The rear rotor in Woodward (1987) has fewer blades (9 versus
11) than the front rotor and hence the predicted magnitude of the new effect (recall the "nBM"

scaling law for the new effect) is correspondingly smaller. Also as far as unsteady effects are
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concerned, the steady and quasi-steady CRP theory developed herein predicts a "smoothing"
effect of the front rotor in terms of the effect of inflow distortions on the rear rotor and hence
the unsteady effects on the rear rotor are also predicted to be smaller than on the front rotor.

At any rate the reasons for underprediction of effects on the rear rotor are not clear.

4. Finally if we examine figures 18(a),(b), 19 (as a typical case), it would appear that the maxima
and minima of the data appear at larger "¢" with respect to the theory for the front rotor and
vice-versa for the rear rotor. For the CRP used in Woodward (1987b), the front rotor spins in
the direction of decreasing "¢" (clockwise forward looking aft). It may be surmised that when an
elongated centerbody such as used in Woodward (1987b) is placed at an angle of attack to the
freestream and the propellers are placed aft of the maximum diameter location of the center-
body, the propeller blades could experience a once per rev distortion of incoming axial velocity
such that this velocity is diminished on top and increased on the bottom. In Figures 20(a),(b)
and 21, a calculation was carried out assuming the presence of such an axial velocity distortion
of magnitude 10% of the freestream velocity. Comparing these results with figures 18(a),(b)
and 19, clearly a shift is obtained of the theory which is in the right direction relative to the data.
The purpose of this exercise is to indicate that small distortions of axial velocity additional to the
tangential velocity distortion created by angle of attack can cause significant shifts of the predic-

tions in the "¢" direction even if the magnitudes are not much affected.

A complete version of theory-data comparisons with all of the data obtained by Woodward

(1987b) will be published in a NASA contractor’s report to follow.
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Concluding remarks

In this study an approach based on steady and quasi-steady aerodynamics of a propeller has been
developed to predict both the steady loading/thickness BPF noise and the unsteady loading/thickness
BPF noise developed by a propeller operating at angle of attack. Originally a conventional acoustic
theory was used in which the only mean flow effect accounted for is a uniform axial flow. Application
of this approach to data of Woodward (1987b) indicated a severe underestimation of the magnitude of
the effect of angle of attack on BPF noise from a CRP. A new idea has been developed in this paper
based on the notion that the small crossflow due to angle of attack (designated in Mach number as
"My“) actually profoundly alters the steady loading/thickness BPF noise (causing it to be azimuthally
non uniform). This effect may be far more important than unsteady loading/thickness noise for
heavily loaded, high tip Mach number propellers with a large number of blades. This effect has been
calculated only to O(My) in this study. Revised theory-data comparisons indicate that the underesti-
mation problem is substantially resolved especially for BPF noise from the front rotor though
underestimation of the magnitude of noise decreases due to angle of attack for BPF noise from the
rear rotor is still in evidence. Since the O(My) effect has itself proved to be large, it is suggested that

research is needed to calculate the acoustic impact of the crossflow more fully.
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Appendix 1: Quasi Steady Aerodynamics of Propellers

Single Rotation Propellers

Let u(r,¢), v(r,¢) denote externally contributed nonuniform axial and tangential velocities incident
on the propeller. "u" is taken positive in the downstream direction and "v" is taken positive in the

direction of propeller rotation.

At any radius, the quasi-steady forces (thrust and tangential force) are obtained in the functional

form:
F = f())

where "(Y" denotes the propeller rotational velocity in radians per second, and "X" the speed ratio

"U/R," where U is the advance velocity of the propeller.
The change in the force, F, due to u and v can be obtained as follows.

In the quasi-steady approximation, changes in 2 and A due to u and v, will be:

v
r

u 14
6A—A[U + ﬂr]

M =-

The resulting change in F can be written:

§F = 20f(\)6n + (P [-gﬂ 8\

[ (S]a e (3 a

Thus, if u, v are nondimensionalized by introducing:
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Uu v
‘= —andv’ = —
“ER™Y TR
we have:
F\ R . OoF .
= |- Fl v+ =
§F [2F+A6A]rv o

Now, 8F /8 can be approximated by a central difference formula:

F _ F(A+e) - F(x)
a 2%

where "¢" is a small increment.
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Counter Rotation Propellers

Now, in general, the extension of the steady single rotation propeller theory to the counter rotation
case will yield for quantities (Qp) associated with the front rotor a functional relation of type:
Or = Crllifr (AS)

where "C" is a suitable constant of proportionality at a given radius. Likewise, for quantities (QR)

associated with the rear rotor we may write:

Qg = CRifr (A.S)
We now wish to compute the variation §Qr, §Qg, due to the extra (u,v) velocity field. We note the fol-

lowing intermediate relations:

8 = -v/r, 8g = v/r
A=A [u/U+v/(rnF)]
58S =-S v/(rﬂp)+v/(rﬂR)]
= -5 (148) /()

=-5.(1+5). A. (}—i’—’—) v/U)
Thus:

6Qr = Cr [mfmpfp + 0 (5 e )8+ 0 (—)6\9]

= Cpllf [«\ (——) (77 )+[-2 A (—"—)frh\2 (—P—) (fF) S.(1+8). A (“&)( )} (V/U)}
Likewise:

60k = Cr [2 Og. 8. fr + k. (-—[’1) s+ 0k ( f“) 6:1

ofr

LWL S RORNGOTE )](v/U)}

=CRnR[ (fR) (7 ) @S (—p) fat 2.
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These are the relations that are used to determine the fluctuation quantities in the quasi-steady
approximation for the counter rotation case. Note that partial derivatives with respect to both ")\" and
"S" (advance ratio and speed ratio) are now required. These are evaluated by examining steady solu-

tions for the following five pairs of points in the (),S) space:

(AS), (A+0.01,5), (3-0.01,S), (A,S +0.01), and (»,5-0.01).
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Appendix 2: Notation

Cr Cr:

0

feo

Number of propeller blades
Ambient speed of sound
Constants of proportionality associated with front and rear rotors at a given radius, r

Steady (thrust) force per unit spanwise length exerted by each blade in the z direction (Fig-

ure 2); fz o is a function of radius "r"

Steady (tangential) force per unit spanwise length exerted by each blade in the "¢" direction
(Figure 1); note that fy, is a function of radius and also that, in view of Figure 1, if the

sense of rotor rotation is clockwise (forward looking aft), f,, will be negative
Representative airfoil thickness as a function of radius

V-1

Bessel function of the first kind

Wave number, nB}/c

Airfoil chord as a function of radius

Flight Mach number

Harmonic of blade passing frequency of interest (n > 1)

Far field acoustic pressure due to steady loading and thickness

Radius of interest

Distance of observer from center of retarded propeller disk location (reference is made to

Figure 3)
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ﬂF,QR:

Distance of observer from center of current propeller disk location (Figure 3)
Propeller radius

Rotor speed ratio, i.e., S =0/

Time

Forward flight speed

Perturbation axial velocity component (positive downstream)

Perturbation tangential velocity (positive corresponds to " in same sense as direction of

rotation of forward rotor)

Azimuthal angle as defined in Figure 1 (note that ¢ = 0, 180 represent the horizontal direc-

tion)

Advance ratio based on front rotor, ie., A=U/(RQF)
Ambient air density

"Emission" angle for propeller noise

"Observer" angle for propeller noise

Angular velocity of propeller in radians per second

Speeds of rotation of forward and rear rotor
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Figure 4. - Definition sketch for radial lean.
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Figure 5. - Definition sketch for axial sweep.
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Figure 11.

~ Modulation of radiation efficiency of a rotating

steady source due to cross flow.

37



"MO[J $S04D Fuipnour uotienba
JAEBM PIIDIAUCD JOJ WAISAS APUIPIOO) - 7| aangdt g
y4
X - -—
<— (eallsdn
$s001 =2
buists = A -

AY

38



“(Aw)o 01 Moy} sS0ID

guIpn[oul S3)}BUIPIOOD PApIe}3l PUB JUILIND UIAMIAQ UOLIP[AY — "E1 aand g

H éuis W

Y9N

)

39



)oejjle-jo-aj3due

"o06 = 6 ‘¢ snsiaa (ydeile-jo-a[8ue o019z 0) aaryeal)
o6 01 2np astou jo 3sealdap/asealou] - AJ0ay) PasIAal uo paseq uor}oipaad [esr)aroay)

S1 aul[ [[nj pue ‘ejep painsesaw 9Je S[oquAS ‘(H861) A00[g ST 9DJNOS Blep D1)sNody  “astou Aouanbadj

durssed ape|q [ejuswepunj ‘paads 1y31(j pJemioj sdj-goi ‘paads di) sdj-gvv

$

1744 09¢ 00¢ ove 08l oct

‘Z-Y¥S pape[q-anog - g1 8andiy

09 0

_ _ _ _ _ _ [ _ _ _ _

40



",06 = © ‘¢ snsyaa (yoejle-jo-a[due 0J3Z 0} ATIB[BI)
yoelje-jo-a[due ,6 01 anp astou jo aseaInap/asealdu] " AJO3Y} PISIA3I UO paseq uor)o1paid [eoni119103Y})
S1 aul[ [N} pue ‘elep painsedu aJe sjoquAs ‘(y861) }J20[g S! 9DINOS EBIEP DI}SNODY ~ASTOU Aouanbaua

Surssed ape[q [ejudwepunj ‘paads jydi{j piemioj sdj-001 ‘poads dr1y sdj-cvs ‘7-4S pPpR{Q-INOj - "Gl 3Ing 1y

¢

ocy 09¢ 00€ 0] 44 08l 0cl 09 0

41



YIR}IB-JO-a[3uR 0] Anp ASIOU O ASEAIDAP/ASEAINUL ((LRGL) PIEMPOON SI

921IN0S BJEP ljdg 10101 JUOdj Q0L - pA101pasdg pue po1r = PAINSEIUG - Li0ay) pasiana uo paseq uoryorpaad

S dul[ pr{os pue ejep painseaw aJe sjoquAs !yoejje-jo-aj3ue aailap g1 !z 0 Jaqunu yory mopj jeixe
"P£94/0192 wdy 1S3489D peGe/L 1b Sa[3ue yniid snipes yG/ tgy) JAVAWRIp C1) 7 PAPTIO 6 X (1 - C(v)or aindrg

¢

00v 00¢ 00¢ 00t 0
[ I | | I G'¢c—

ap

42



00V

1)

00€

- vmwo_tmuam

00¢

1daoxa ‘(e)gr aindt) se awe§ -

¢

00t

“(q)91 2andry

|

|

Gdc—

Gl—

GL—

ap

G/

G

43



- 06 = pajorpaldg - p3Inseally pue j4q J0j0a 1eas }daoxa ‘(e)gr aindry se aweg - /1 aangiy

| b

0]0)% 00¢ 00¢ 001 0
[ T T _ _ G¢c—
v
v
v
—G'/.—
gap

— O
-6/,

44



“joeyle-j0-313ue 0} S0P ISIOU JO ISBIIVAP/ASLAIDUL  ((LBGI) PIempooy

$1 904N0S elep !jdg JO)OI juoly ! ool = pajdipaidg L boL = palnseallg < £i00y) posiasg uo poseq parotpoad

St aul| pr|osS pue elep paInsesaw 3Je S[OquAS !HOe)ie-jo-o(due 8au3ap @ ‘g () JAQUNG YHRK MO| | [eIXE
166947869, wda tsBaBap G yg/p 9e sa|due yojid SNIPRI Y64 LU SOOWRED Ch )T papeiq G X 11 (w)gr oandry

¢

0[0)7% 00€ 00¢ 00t 0

\AAA/




00v

* 011

00¢

- pa3ioipaxdg

002

ydaoxa ‘(e)gi aundi} Sse aweg -

“(q)g1 aIndiy

GLl—

Gl

46



- g = Pa1dIpaldg - painsedlly pue j4g Jojod 1ear jdaoxa ‘(e)gl aIndry se aweg - Gl AINANY

| b

(0]0] 2 00¢ 00¢ 00l 0
r T | T T oL—
v v
vV v
v
v
v v
- ml
71%gp
v
v
vy vyVvYy — m

\AAA4

47



“PauMSSe S1 UoT}40)SIp A}1D0[3A [BIXe Al Jad aouo %01 e 1ey) 1daoxa ‘(yoeyje-jo-a[due
8 ‘001 = pa1o1paadg ' bOL = PINSEIUg ¢ y4g J0j0T Juoay) ‘(R)RL AINBLy se Aweg - *(R)OT angy

00¥ 00€ 00¢ 00} 0
r _ _ vw b _ SL-

(o]

48



+0LL = paioipaddg jdaoxa ‘(e)og 2Indry se aueg - (q)og Bandiy

$

00y 00¢ 00¢ 00l 0

I | [ vv V |

GL—

G¢c—

Gl

49



© g = Pa1oipaidy - paunseally pye jg4g 10101 Feaa 10j 1daoxa ‘(e)og aindij se owes - 17 aIndiy

| b

0]0) 7 00¢ 00¢ 00lL 0
| ] | | | oL—
vV
vV
v
v
v v
— ml

—10

ap
v
v
vy \A A/ —1G

50



NASA Report Documentation Page

National Aeronautics and
Space Administration

. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-4264

4. Title and Subtitle 5. Report Date
The Radiation of Sound From a Propeller at Angle of Attack January 1990
6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Ramani Mani None (E-5139)
10. Work Unit No.
535-03-01
9. Performing Organization Name and Address

i 11. Contract or Grant No.
General Electric Company ntract or Gral

Corporate Research & Development NAS3-23721
P.O. Box 8 :
Schenectady, New York 12301 13. Type of Report and Period Covered
- Contractor Report

12. Sponsoring Agency Name and Address Final
Natigna] Aeronautics and Space Administration 14. Sponsoring Agency Code
Lewis Research Center
Cleveland, Ohio 44135-3191

15. Supplementary Notes
Project Manager, James H. Dittmar, Propulsion Systems Division, NASA Lewis Research Center.

16. Abstract
The mechanism by which the noise generated at the blade passing frequency by a propeller is altered when the
propeller axis is at an angle of attack to the freestream is examined herein. The measured noise field is distinctly
non axially symmetric under such conditions with far field sound pressure levels both diminished and increased
relative to the axially symmetric values produced with the propeller at zero angle of attack. Attempts have been
made to explain this non axially symmetric sound field based on the unsteady (‘“once per rev'’) loading experi-
enced by the propeller blades when the propeller axis is at non zero angle of attack. A calculation based on this
notion appears to greatly underestimate the measured azimuthal asymmetry of noise for high tip speed, highly
loaded propellers. A new mechanism is proposed herein; namely, that at angle of attack, there is a non axially
symmetric modulation of the radiative efficiency of the steady loading and thickness noise which is the primary
cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily loaded propellers
with a large number of blades. A calculation of this effect to first order in the crossflow Mach number
(component of freestream Mach number normal to the propeller axis) is carried out and shows much better agree-
ment with measured noise data on the angle of attack effect.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Propeller noise, Installation effects on propeller noise: Unclassified — Unlimited
Angle of attack effects on propeller noise; Steady loading Subject Category 71
and thickness noise; Aircraft control integration

19. Security Classit. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*

Unclassified Unclassified 52 A04

NASA FORM 1626 OCT 86

"For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1990







